Why are my muscles stiff?

Untitled

This is the joint by joint approach

Gray Cook is a mentor of mine and he advises:

Ribs, vertebrae and lots of muscle and fascia crisscrossing the front and back of the thorax cause thoracic stiffness. We don’t inherently have a lot of mobility there, but we need all we can get. However, stiffness isn’t just something we need to get rid of. Stiffness is there for a reason. Biological mechanisms that move very well in childhood will develop stiffness following an injury or following repetitive bad mechanics over time. If the body doesn’t stabilize correctly, it will figure out another way to get stability: it’s called stiffness.

A quick summary looks goes like this–

1. The foot has a tendency toward sloppiness and therefore could benefit from greater amounts of stability and motor control. We can blame poor footwear, weak feet and exercises that neglect the foot, but the point is that the majority of our feet could be more stable.

2. The ankle has a tendency toward stiffness and therefore could benefit from greater amounts of mobility and flexibility. This is particularly evident in the common tendency toward dorsiflexion limitation.

3. The knee has a tendency toward sloppiness and therefore could benefit from greater amounts of stability and motor control. This tendency usually predates knee injuries and degeneration that actually make it become stiff.

4. The hip has a tendency toward stiffness and therefore could benefit from greater amounts of mobility and flexibility. This is particularly evident on range-­of-­motion testing for extension, medial and lateral rotation.

5. The lumbar and sacral region has a tendency toward sloppiness and therefore could benefit from greater amounts of stability and motor control. This region sits at the crossroads of mechanical stress, and lack of motor control is often replaced with generalized stiffness as a survival strategy.

6. The thoracic region has a tendency toward stiffness and therefore could benefit from greater amounts of mobility and flexibility. The architecture of this region is designed for support, but poor postural habits can promote stiffness.

7. The middle and lower cervical regions have a tendency toward sloppiness and therefore could benefit from greater amounts of stability and motor control.

8. The upper cervical region has a tendency toward stiffness and therefore could benefit from greater amounts of mobility and flexibility.

9. The shoulder scapular region has a tendency toward sloppiness and therefore could benefit from greater amounts of stability and motor control. Scapular substitution represents this problem and is a common theme in shoulder rehabilitation.

10. The shoulder joint has a tendency toward stiffness and therefore could benefit from greater amounts of mobility and flexibility.